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1. Introduction. Explicit numerical solutions of the equation of heat conduction 
in a wall of one material have been widely discussed in the literature. Consideration 
of the forward difference equation studied in references [2], [3], [4], and [6] suggests 
a variety of ways to handle the solution for a composite wall. This paper is a study 
of the convergence, stability, comparative accuracy and comparative computing 
time of three explicit numerical solutions of the heat equation for a wall composed 
of two materials. 

2. System of Equations. The equation for the one-dimensional flow of heat is: 

(1) sp~Cs du = a \ks ,1 where al, < x < as s = 1, 2 

0 < t ? tF 

with the condition at the interface 

(2) kl (atb) =k2 (a) 

where ps , cs, and ks are constant with respect to time and temperature but may 
be different for each material. 

We will assume the boundary conditions: 

u(ao, t) = constant, t ? 0 

u(a2 , t) = constant2 t > 0 

and initial conditions: 

(4) u(x, 0) = constant3 ao < x < a2 

Let each material's thickness, as- as-,, be divided into Ns equal parts of Ax8, 
and tF into equal parts of Ats . Let i denote the subscript associated with the space 
variable and j the subscript associated with the time variable. Let the solution of 
(1)-(4) be called T(x, t). 

Taylor series expansions of Th j+l, Ti+j , and Til, , about Tij are used to 
obtain 

(5) Tirj+ =s8 A [Ti+ ,j-2Tj + Ti1ij + Tij + E 

where rs = ks/pscs and 

At2 a 2T rs ~tl~xs2 a4T 
El = 2 _ 

--A 12a'T + terms of higher order. 
Omitin eq12 (eX4 

Omitting El, equation (5) gives a difference equation for finding the approximate 

Received December 28, 1959; revised April 27, 1960. 

346 



SOLUTIONS OF THE ONE-DIMENSIONAL HEAT EQUATION FOR A COMPOSITE WALL 347 

solution of (1)-(4), Tijal , when xi, xi-,, and xi+, are in the same material. This 
is the same as the forward difference equation for a one-material wall. 

The following equation for Ti,j+1 at the interface is derived in a manner similar 
to that used by M. Lotkin [5] in his discussion of an implicit method for a wall 
of two materials. 

[ ( Ti+, -Ti2 + (Tij - TijA) k1 2At 
(6) Tij + Ax2 Ax, = Tj+l + E2 

Ax2 C2 P2 + AX1 C1 P1 

where 

2At [Axi cl P1 At a2 T Ax12ki (a3T\ 

= Ax2c2p2 + AXiclpi 4 at2 6 \axIi 
k1Ax 3 (&4T\ Ax2 C2 P2 At 92T 

24 \&x4,/ 4 &t2 

AX22k2 (a3TT + k2 AX23 a4 T 1 
+ 6 Yx_3 24 aX4 )2j + terms of higher order. 

Omitting E2, equation (6) gives a difference equation for finding Tijul when xi 
is at the interface, xi-, is in the first material, and x.z1 is in the second material. 

3. Definition of Methods. Stability is maintained in the explicit numerical solu- 
tion for a wall of one material by choosing 

(7) At < PCAX. 
2k 

Using equations (5) and (6) as our basic computing equations, three different 
means of choosing At will be defined and thereby different computational schemes. 
We will arbitrarily assume that ri > r2 and, for simplicity, will confine the dis- 
cussion to cases in which rl/r2 is an integer R, and V/rl/r2 is an integer. 

If Ax is specified as the thickness of each lamina within the wall, equation (7) 
gives two different maximum usable time increments depending on the properties 
of each material; 

At1 = and At2 = 2 
2ri 2r2' 

METHOD 1. In the first method an attempt is made to circumvent the difficulty 
of having two At's by letting Ax1 = Ax and redefining Ax2 such that Ax2 = Ai\I/V/R. 
This increases the number of laminae in the second material but yields only one 
time increment, Atl = At2 = At. The computations would take place as follows: 

Given Ax = Ax1, ri and r2 
1. Compute Ax2 = AiX/V/R 
2. Find At = At1 = At2 

3. Set time equal to At 
4. Use equation (5) to find the temperatures in material 1. 
5. Use equation (6) to find the interface temperature. 
6. Use equation (5) to find the temperatures in material 2. 
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7. Advance the time by At. 
8. Repeat steps 4 to 7 until the temperatures at tF have been computed. 

METHOD 2. In the second method At is chosen by evaluating At, and At2 and 
using whichever is less. The computations would then be: 

Given Ax = Ax1 = Ax2, ri and r2 
1. Choose At = min (At1, At2) 
2. Proceed as in steps 3 to 8 of Method 1. 

METHOD 3. In the third method both time increments are utilized by using the 
smaller increment only for those points at which it is necessary and the larger 
increment for the rest. The smaller time increment must be used for all points in 
the first material, at the interface, and for enough points in the second material 
to enable a smooth transition. For example, when R = 4, those points on the grid 
in Figure 1 denoted by dots are computed using At, and then those denoted by 
crosses are computed using At2. The computations would proceed as follows: 

Given Ax = Ax1 = Ax2, r1 and r2 
1. Compute At, 
2. Compute At2 
3. Set time = 0 
4. Set Q = R - 1 
5. Advance time by At, 
6. Compute the temperatures in material 1 using equation (5) and At,. 
7. Compute the interface temperature using equation (6) and At1. 
8. If Q = 0 proceed to step 12. 
9. Compute Q points in material 2 using equation (5) and At,. 

10. Q - 1 -> Q. 
11. Repeat steps 5 to 10 until indicated by step 8. 
12. Compute temperatures in material 2 using equation (5) and At2. 
13. Repeat steps 4 to 12 until the temperatures at tF have been computed. 

4. Convergence of Solutions. 
THEOREM. If there exists a solution of the system of equations (1) to (4) which has 

bounded derivatives a2T/at2, a3T/ax3, and a4T/ax4 in 0 ? t ? tF, ao < x < a, and 

ii I~~ I- 

t __ __, t I 

t I 1.GI Is 
FIG. 1. Grid points for R =4. 
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a, < x < a2, then the solutions obtained with methods 1, 2, and 3 converge to the true 
solution. The rate of convergence is 0 (Ax2). 

Proof. Let B1 = I upper bound on 9T/at2 T1, B2 = i upper bound on la4T/aX4 I, 
and B3 upper bound on 3T7/ax3 1 . A barred derivative denotes that it is evalu- 
ated somewhere within the interval 0 ? t ? tF, ao < x < a,, a, < x < a2. 
Define the error at the point xi, tj to be eij = Tij - uij . Here uij is the true 
solution of (1)-(4). The error arising from the use of equation (5) satisfies the 
following equation: 

r8 At (2 T r8 AtAx. 2 (4T (8) eij+i = [e+?,j - 2eij + ei-,, + eii + At - _- 
-X4 

1 & 

(8') e |< r8 At e + 2r8 At r8 At e At2 r8 AtAx 2 
(8 ) eij+, < l 'x2 ei+,j + 1 Ax82 eij + -+-B + 8 B2. Ax~' 2 12 

Let cj = max i ej , then 

r8 At 2r, At r8 At At2 r_ AtAX_2 
(8") eij+1 =< LAXS2 + 1 AX2 + iAx2 0(j + 2 B1 + 12 B2. 

In methods 1 and 2 At < Axz2/2r8 (s = 1, 2) and therefore r8At/Ax82 =< . This 

causes each of the terms within the absolute value signs in equation (8') to be 

positive and so they may be eliminated giving 

At 2 AX4 
(9) eij+l < a_ + B, + 8 B2 

2 24 

In method 3, the larger time increment, At2, is only used at points for which 

At2 < Ax22/2r2 is satisfied and whenever At, is used, in the first material or for the 

transition values, At1 < AX8 2/2r, (s = 1, 2). Therefore, whenever equation (5) 

is used At < Ax2/2r and so equation (9) also applies to method 3. 

The error in the evaluation of the interface temperature from equation (6) 

satisfies 

[(ei+,j - eii) Ax2 + (ei-,j - ei,) 2At 
(10) ei,j1+ = ei,j + AX2c2p2 + AxAcp1 2 

ei 
r 

ykL + kil 2At l 
't1 [ Ax2 + Axi] [AX2C2P2 + Axclplj 

(11) + [AX2 A] + At B + AtB3(Ax ki + Ax22 k2) 

AX2c2P2 + AX1C1P1 2 3(AX2C2P2 + AX1C1P1) 

+ AtB2(k1Axl3 + k2A23) 

12(Ax2c2p2 + AXleCpl) 

Since in all three methods the At used in the interface equation is min (At1, At2), 

Ax2 c2 P2 Axi cl Pi r k2 k11 
At +A 2 L_ + 

At At aX2 Ax,_ 
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and, therefore, (11) can be rewritten as 

ei j+1 _ + A2 B + B3 [kiAx2(Ax13) + k2 x1 (Ax23) 1 
(12) 2 6 L Ax, k2 + AX2kj 

+ B2 rk1ZAX2 (AX14) + k2 x1 (Ax24) 
24 Ax, k2 + Ax2kj I 

Let Ax = max ( Ax1, Ax2), then (12) becomes 

(13) eij~l < a3 +At2Bi + 6 B3 + 
X4 B2. 

Comparing equations (9) and (13), it can be seen that 

At2 Ax Ax4 
(14) aj+ < ?aj + B, + 6B3 + -4 B2 where At = max (Atl, At2) 

and Ax = max (Ax, ,AX2). At any point t = jAt 

-A2 Ax3 AXB2 
(15) a ? ao + j [2B + y B3 + 24 

The rate of convergence is, therefore, of the order 0 (At & Ax2). Since At is of the 
order 0(A\x2), the rate of convergence is 0( Ax2). 

5. Analytical Example. In order to examine the performance of the three meth- 
ods, a test case will be used for which some analytical solutions are known. The 
equations for the composite wall will first be reduced, by transformations of the 
variables, to the equations for a wall of one material. To do this we will impose the 
conditions: 

(16) (i) kicipi = k2c2p2 

(ii) ao = 0. 

Define the transformations 

(i) jo~~~~b + (1-b) a2 0 X: x a; X a, 

(17) bx + (1-b)a2 a, < x a2 

(ii) r = r2b 2t 0 _ t ; tF 

where b = ki a2 
k(a2- a,) + k2a1 

This reduces equations (1) to (4) to 

(18) au =2u 0 < y < a2,0 _< r ? 
tFr2b2 

u(O, r) constant, r _ 0 

u(a2, T) = constant r >-0 

(20) u(y, 0) = constant3 0 < y < a2. 
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The solution to this set of equations is found in reference [6] for 'r = 0(.005).1, 
y = .4, constant1 = constant2 = 0, constant3 = 1, a2 = 1. 

6. Test Case Results. Each method was programmed for the IBM 704 EDPM. 
The test data used was ki = 10, ci = 5, Pi = 2, k2 = 5, C2 = 4, P2 = 5, ao = 0, 

= .5, and a2 = 1. Each method was run for three cases: Case A, Ax = .1; case 
B, Ax = .05, and case C, Ax = .025. 

To examine the rate of convergence, the maximum differences for a given time 
point were found between the results for case A and case C, and the results for 
case B and case C. The ratios of these maximum differences ranged between 3.8 
and 5.0 for each of the three methods. Since the ratios of the Ax's were 2.0, this 
would seem to corroborate that the rate of convergence is 0( Ax2). 

To compare the accuracy of the three methods, the data presented in reference 
[6] was used. Their values correspond, according to the transformation presented 
in equation (17), to x = .55 and x = .7 for t = 0 (.01125).225. These values, 
as well as those obtained for case C for the three methods, are presented in Table 1. 
It can be seen from the table that, although they all showed close agreement, 
method 2 gave the most accuracy with a maximum of .08% error, method 1 the 
next with a maximum of .14% error, and method 3 the least with a maximum of 
.28% error. The symmetry of the transformed equation indicates that for this 
case the temperatures should be the same for x = .15 and x = .925, x = .3 and 
x = .85, x = .45 and x = .775, and for x = .55 and x = .7. When comparing 
the results at these points at t = .1, method 1 has them all the same, method 2 
has a greatest difference of .04%, and method 3 has a greatest difference of .53%. 
A comparison at t = .225 shows method 1 has them all the same, method 2 still 
with a greatest difference of .04%, and method 3 with a greatest difference of 
.20%. These differences are reasonable in terms of the methods of choosing At for 
computation and illustrate that in method 1 the results for both materials is equally 
accurate, for method 2 the results for the second material is a bit more accurate 
than for the first material, while for method 3 the result for the second material 
is less accurate than for the first but their differences decrease as more time steps 
are taken. 

TABLE 1 

Time Exact Method 1, Method 1, Method 2, Method 2, Method 3, Method 3, 
Solution x = .55 x=.7 x x=.7 x=.55 x =.7 

.0225 .9953 .99536 .99536 .99551 .99499 .99579 .99557 

.0450 .9518 .95145 .95145 .95188 .95127 .95254 .95055 

.0675 .8832 .88261 .88261 .88306 .88275 .88354 .88136 

.0900 .8088 .80807 .80807 .80851 .80840 .80868 .80686 

.1125 .7363 .73556 .73556 .73598 .73597 .73590 .73448 

.1350 .6686 .66782 .66782 .66821 .66826 .66797 .66689 

.1575 .6063 .60561 .60561 .60597 .60605 .60562 .60481 

.1800 .5496 .54891 .54891 .54924 .54933 .54882 .54821 

.2025 .4981 .49739 .49739 .49770 .49780 .49724 .49678 

.2250 .4513 .45067 .45067 .45095 .45105 .45047 .45011 
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Although the time increments were chosen on the basis of equation (7), it is 
pointed out in reference [6] that a slightly larger increment is possible, namely 

Atmax < cp Ax2 

(21) 2k sin2 [(N -)- r 

Using case A, the programs were run until instability appeared in an attempt 
to see what the maximum increment actually was for two materials. For method 3, 
if the maximum At's are computed separately for each material of 5 laminae with 
equation (21), the result is At, < .005528 and At2 ? .022112. The experimental 
results corroborated this since it was stable up to At1 = .0055 and At2 = .0220 
but unstable for At, = .0056 and At2 = .0230. For method 2, computing the maxi- 
mum time increment for each material of 5 laminae and then choosing the smaller, 
one gets At < .005528. The test showed the same result as it was stable up to 
At = .0055 but unstable for At = .0056. In method 1, when using equation (7), 
the adjustment of the thicknesses of the laminae in the second material led to 
equal At's. However, when using equation (21), the At's obtained are At1 ? .005528 
and At2 < .005125 since the number of laminae in each material is different. The 
test runs showed that it remained stable until At = .0053 but was unstable with 
At = .0054. This might indicate that a maximum time increment was used which 
is the average of At1 and At2 but no conclusion is possible since the stability con- 
dition states that it should be stable below the computed Atmax but it is not neces- 
sarily unstable for a At above it. However, all these stability test runs seem to 
indicate that when there are two materials in a wall, the maximum usable time 
increment is quite closely related to the maximum increments computed for each 
material separately. 

7. Comparison of Computing Time Required. The amount of computing time 
required for each method can be compared by comparing the number of tempera- 
tures that must be evaluated. 

Let us assume that the thicknesses of the first and second materials are equal 
and that tF = PRAt1 (where P is any integer). It should be noted that given Ax, 
r , and r2 , each method will compute the same value for At1 and Ax1. 

In method 1 there are N1(1 + \I?) laminae and P1 time points. Therefore, 
the number of temperatures computed equals P[RN1(1 + I/R) - RI. In method 
2 there are 2N1 laminae and PR time points and so P[2N1R - RI temperatures 
are computed. In method 3 each of the N1 - 1 temperatures in the first material 

TABLE 2 

Case A Case B Case C 

Method 1 P (56) P (116) P (236) 
Method 2 P (36) P (76) P (156) 
Method 3 P (30) P (55) P (105) 

Ratio 
M1:M2:M3 1.87:1.20:1.00 2.11:1.38:1.00 2.25:1.49:1.00 
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is computed PR times, the interface is computed PR times, and for each step of 
At2, which occurs P times, N1 - 1 values are computed plus the additional number 

R-1 

of transition values = E i. Method 3, therefore, computes 

P [N, R + N,- + _2-- 

values. From this it can be seen that for all R > 1 method 2 is faster than method 1. 
For 2N1 - 2 > R > 1 method 3 is faster than method 2. This comparison is il- 
lustrated in Table 2 for cases A, B and C of the test data used. 

8. Conclusions. The analysis and test cases used considered constant boundary 
and initial conditions. Since the stability and convergence depend also on the 
boundary and initial conditions, as has been pointed out in references [1], [3], and 
[4], it is quite possible that the introduction of varying conditions would lead to 
different results as to the usefulness of each method. 

From this study it seems that method 1 is the least acceptable since it takes the 
most computing time, gives less accuracy than method 2, and presents the most 
difficulty when R is not an integer. Depending on the amount of accuracy desired, 
methods 2 and 3 seem of equal usefulness since method 2 gives the most accuracy 
but method 3 takes less computing time. 
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